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Abs act

Fuzzy logic allows for the quantitative represen-

tation of multi-objective decision-making problems which

have vague or fuzzy objectives and parameters. As such,

fuzzy logic approaches are well-suited to situations where
alternatives must be assessed by using criteria that are

subjective and of unequal importance. This paper presents

an overview of fuzzy logic and provides sample applica-

tions from the aerospace industry. Applications include an

evaluation of vendor proposals, an analysis of future

space vehicle options, and the selection of a future space

propulsion system. On the basis of the results provided in

this study, fuzzy logic provides a unique perspective on

the decision-making process, allowing the evaluator to

assess the degree to which each option meets the evalua-

tion criteria. Future decision-making should take full

advantage of fuzzy logic methods to complement existing

approaches in the selection of alternatives.

Nomenclature

A/R

BV

H2

Isp

L

Lh

Lmax

Lmin

LOX/CH4

LOX/LH2

NTO/MMH

02

P

QFD

Air-breathing/Rocket

Best value of a criterion

Hydrogen

Specific impulse, sec

Second-level index value

Final composite index value

Maximum of final composite index values

Minimum of final composite index values

Liquid oxygen/methane

Liquid oxygen/liquid hydrogen

Nitrogen tetroxide/monomethyl hydrazine

Oxygen

Balancing factor

Quality Function Deployment

RBCC

S

SSTO

STS

TSTO

U

UL

UR

w

WV

Z

I.tM

Rocket-based combined cycle

First-level index value

Single-stage-to-orbit

Space Transportation System

Two-stage-to-orbit

Total utility value

Left utility value

Right utility value

Weighting factor

Worst value of a criterion

Evaluation criterion actual value

Minimizing set

Maximizing set

Often in aerospace applications engineers and

managers are asked to make decisions on the basis of

widely divergent objectives. For instance, contract pro-

posals may be evaluated on the basis of technical merit,

total cost, ability to meet schedule requirements, and

intangible attributes such as previous performance. In
such situations experts are asked to evaluate the proposals

on the basis of their best judgement. Often, only qualita-

tive or vague statements can be made, such as good per-

formance, or poor cost. Experts then apply numerical

ratings to these vague, or fuzzy, terms to assist in the eval-
uation. However, each of the scoring criteria may have a

different degree of importance depending on the approach

of the evaluation. This relative importance must be taken
into account to assure that the best decision is made

among many different alternatives.

Fuzzy logic provides a means for evaluating

alternatives where the objectives and criteria are vague
and where the ranking criteria themselves vary in impor-

tance. Fuzzy logic is a subset of conventional logic that



has been extended to allow for degrees of truth - truth val-

ues between true and false. Fuzzy logic has been used in a
variety of applications, including control systems, m arti-

ficial intelligence, TM and reliability analyses, s,6 Fuzzy

logic approaches have also been used in civil engineering

applications for assisting in the selection of disposal sites
for hazardous waste, 7.s management of multipurpose

aquifers 9 and selection of site locations for dredged mate-
rial. lo

This report will show how methods provided in

the literature can be applied to decision-making in aero-

space applications. The report will provide a background

on fuzzy logic, including a description of the differences

between classical set theory and fuzzy set theory. Three

examples will be used to illustrate how fuzzy logic can be

used in the aerospace industry. These examples will be a

hypothetical bid proposal evaluation, selection among

various space vehicle candidates for Earth-to-Orbit trans-

portation, and a space propulsion system selection pro-
cess. The differences between conventional and fuzzy

logic approaches to multi-objective decision-making will

be discussed in the presentation of the examples.

Fuzzy Logic

Fuzzy logic is not itself logic which is fuzzy, but

rather it is a rigorous mathematical discipline for examin-

ing complex systems where the objectives and controlling

parameters are vague or qualitative in nature. To under-

stand fuzzy logic one must fast examine classical mathe-

matics. Classical set theory, the basis for most decision-

making processes, allows for two options: either some-

thing is a member of a set or it is not a member. An exam-

ple of a classical or crisp set would be the set of

mammals. In this set a dog would be a member of the set

whereas an eagle is not. Difficulties arise, however, when

the platypus is considered in the set of mammals. The

platypus lays eggs and has a duck-like bill, yet is warm-

blooded and is covered with fur. Classical set theory says

the platypus must either be a member of the set of mam-

mals or not a member. In fact, the platypus is somewhat a

mammal and somewhat not a mammal, so it is a partial
member of this set. 3

Fuzzy logic, based on fuzzy set theory, accom-

modates such situations through the concept of partial

membership. In fuzzy set theory, developed by Lotfi
Zadeh in 1965, n everything is a matter of degree. There-

fore, the platypus could be assigned a value indicating
how much it is a member of the set of mammals. In addi-

tion, fuzzy logic allows for a gradual Wansition between

not being a member of the set and being a full member of

the set. Consider the example of the set of old people,

where old is a vague term. One might say, according to

crisp set theory, that 60 is the dividing point between old

and not-old. Therefore, people over this age are old and

those less than 60 are young. In a fuzzy set, however,

someone 55 years of age might be assigned a value of 0.6

to the set of old people, meaning that they are somewhat

old. A 90-year-old person, on the other hand, would be

considered very old, and hence be assigned a value of 1

for their degree of membership in the set. Figure 1 graph-
ically depicts this example.

The concepts of partial membership and gradual

transition between membership and nonmembership are
intuitive when one observes real world situations. How-

ever, when mathematical models are developed, analysts

usually make assumptions forcing a black or white view

of the world due to limits of conventional logic. Fuzzy

logic allows for a break from that view, allowing for par-

tial truth, or gray areas. Uses of fuzzy logic begin to

become evident in engineering systems as each applica-

tion is examined. For instance, in reliability analyses it is

clear that not all failures cause complete system loss.

There may be failures and degradations in the system of

varying degrees. In another example, humans can exhibit

behavior in power plant operation that can drastically

affect the system performance in unpredictable ways.
That behavior can be expressed in vague or qualitative

terms, but the behavior is inherently difficult to quantify.

Fuzzy logic can be applied to address vagueness in these

and many more applications. This is contrasted with prob-

ability theory, which is commonly used to treat impreci-

sion. Probability theory rests on the concept that
imprecision is the result of randomness. However, in

many applications, such as those discussed above, impre-

cision is not the result of randomness alone. Hence, fuzzy

logic becomes necessary to evaluate systems in which the

description is vague, qualitative, or subjective.

The concept of partial membership makes fuzzy

logic ideal for application to a multi-objective decision-

making process. In such a process the decision maker is

presented with a number of alternatives and is asked to

choose the best option. Usually the choice is not simply

made on the basis of a single objective. For instance,

when a person seeks to purchase a new automobile, that

person may desire low cost; however, size, safety, com-

fort, and reliability may all be important factors entering

into the final decision. Ultimately, the potential buyer

mentally ranks the importance of each criterion and

makes a decision on the basis of those priorities. Fuzzy

logic provides a method for quantifying such trade-offs,
even if some of these factors (such as comfort in this

example) are vague, subjective, or qualitative in nature.

Sample Application_

Three examples are presented to illustrate the

fuzzy logic evaluation techniques. In the first example,



hypotheticalproposals from several vendors are consid-

ered for a technical contract. In the second example,

options for future space vehicles for Earth-to-Orbit trans-

portation applications are evaluated. Finally, alternatives

are examined for future upper stage propulsion systems.

Proposal Evaluation

One of the most common situations where a sub-

jective rating process is applied is in the evaluation of

vendor proposals for a technical contract. In the selection

process experts are asked to perform an evaluation on the

basis of factors such as technical performance and cost. In

most cases quantitative values are applied to qualitative

and subjective (fuzzy) rating criteria to obtain a final rank-

ing of the alternatives. Commonly, relative weights are

applied to each criteria and the final vendor rating is

obtained by adding the sum of the weighted ratings for
each criteria. For instance, if a vendor is perceived to

have a very good technical proposal, but the cost is high,
the evaluator may assign a value of 0.7 for the technical

portion and a 0.3 for the cost portion of the proposal. If

cost is twice as important as the technical performance in

the eyes of the evaluator, the final rating for that proposal
would be (0.70)(0.33) + (0.30)(0.67) = 0.43.

Consider as an example that a request for pro-

posals was issued for technology development; such a

case might occur in the development of a new rocket

engine. Assume that four proposals were received to build
the new rocket engine. The proposing vendors will be

designated as A, B, C, and D. The evaluation will be con-
ducted on the basis of technical and cost considerations,

and the technical aspect of the proposal will consist of
five factors. The evaluation criteria and relative weights

for each of the criteria are described as follows:

Technical Item I - Understanding the problem 15 %

Technical Item 2 - Soundness of approach 15 %

Technical Item 3 - Organization of technical effort I0 %

Technical Item 4 - Special equipment/facilities 5 %

Technical Item 5 - Specific company capabilities 5 %

Cost 50 %

Each proposal will be evaluated on a scale of 0 to 1 for
each of these six areas. A rating of I implies that the par-

titular portion of the proposal is outstanding whereas a

rating of 0 implies that the proposal is unacceptable in a

particular area. Intermediate scores are used to describe
evaluations between these extremes. For instance, one

option may have a low cost, which is very good, and
would receive a score of 0.7, whereas another would have

a reasonable high cost, which is fair, and would receive a

score of 0.3. The adjective ratings and associated scores

can be summarized as follows:

Outstanding 1.0

Excellent 0.9

Very Good 0.7

Good 0.5

Fair 0.3

Poor 0.1

Unacceptable 0.0

Assume that an evaluator rates the four propos-

als as shown in Table 1. The evaluator can now rank the

proposals by using conventional approaches and the raw
scores. Weighting factors were obtained from the previ-

ously determined criteria. The raw scores are multiplied

by the weight for each criteria, and a total score for each

alternative is obtained by summing the weighted scores.

Table II shows the results for this example. In this case

Vendor B showed the highest score, followed by Vendor

C then Vendor D. Vendor B's high ratings in the technical

areas led to the selection as the option of choice in this

case.

The proposal evaluation can also be conducted

by using fuzzy logic techniques. In the fuzzy logic
method, described in detail in references 7,8, and 12, the

evaluator first rates each vendor against the desired crite-

ria on a scale of 0 to 1, where a score of 1 indicates

"goodness," as discussed in the conventional process.
These scores are referred to as the raw scores. After all

the options have been rated, a paired-attribute matrix is

prepared to rank the importance of each criterion against

all the other criteria. By calculating the eigenvectors of

the maximum eigenvalues of this matrix the relative

weighting factor of each of the criteria can be obtained.
The raw scores are then raised to the power of the weight-

ing factor to give the weighted ratings. These weighted

ratings show the degree to which each vendor meets each
criteria. According to fuzzy set theory, 12when a decision

is made on a number of fuzzy criteria where all criteria

are important, the intersection of the sets is required. In
mathematical terms, the minimum value of all weighted

attribute scores must be used to obtain the final ranking of

a option. Then, the best option is the largest of these min-
imum scores.

The fuzzy logic process can be performed by

using the raw scores in Table 1. Following compilation of

the raw scores, a matrix was produced showing the rela-

tive importance of each of the criteria in comparison to



the other criteria. This was done by taking the relative

weights used in the conventional analysis and dividing

each weight by the value assigned to each of the criteria.

When this was completed for all attributes, the final result

was a square matrix with a value of 1 along the diagonal.

The paired attribute matrix for this example is shown in

Table 3. Note that other methods, such as the Analytic

Hierarchy Process, exist for obtaining this paired attribute

matrix, as described in reference 10. The fuzzy logic
weighting factors were obtained from the malzix as dis-

cussed previously, and the alternatives were then ranked

by using the minimum weighted score.

The fuzzy logic weighted rankings for this

example are provided in Table 4. As seen in the table, the

alternative of choice from the fuzzy logic procedure is
Vendor C, not Vendor B as was found in the conventional

analysis. This result makes sense in that the cost had the

highest importance in comparison to the individual tech-

nical alternatives. The results of the analysis lead to the

conclusion that as long as a vendor can meet some mini-

mum for the technical requirements, the evaluator should

choose the option with the lowest cost. This was not clear
from the conventional analysis, which put more emphasis

on the high technical scores even though these criteria

may not have been as important to the evaluator. There-

fore, without some method such as the fuzzy logic tech-

nique shown here, a decision can be made on the basis of

the least important factors. As shown by the example,

fuzzy logic techniques emphasize the most important fac-
tors in an evaluation and allow the evaluator to decide

among alternatives on this basis.

Space VehicleCandidateEvaluationforEarthtoOrbit

Transportation

It is evident from today's space market that

many commercial and exploration missions are not being

implemented due to the high cost of transportation to

space. Therefore, NASA must explore options to reduce

the costs of space access. Recently, NASA completed the

Access to Space study to define a national strategy to

meet future space transportation needs. 13Three options

were examined for the Access to Space study. Option 1

was to improve the existing Space Transportation System.

Option 2 was to develop a new family of expendable

launch vehicles and a manned vehicle. Option 3 was to
develop a new fully reusable launch vehicle.

Concurrent with this activity, the Space Propul-

sion Synergy Group has been evaluating competing space

propulsion options for improved access to space. The

Space Propulsion Synergy Group is a national organiza-

tion of personnel from the aerospace industry, academia,

NASA Centers, and other government agencies formed in

1991 to support strategic planning for Earth-to-Orbit

spacetransportationand propulsionsystems.14,15The

Synergy Group recentlycompleted a studyofpropulsion

systemoptionsby usingtheQualityFunctionDeploy-

ment (QFD) process.The QFD processisa method for

clarifyingand documenting customer concernssothat

criticalattributescan bc identified,prioritized,and trans-

latedintointelligentdecisions.14From thisstudy23

desiredsystemattributeswere identified.By usingthese

systemattributesand theknowledge gainedaspartof

theirpreviousstudy,theSynergy Group analyzedthepro-

posed vehiclecandidatesfrom the Access toSpace study

toprioritizetheoptions.16The propulsionoptionsconsid-
eredarelistedinTable 5.

Inthisanalysisthe Synergy Group ratedeach

vehiclecandidateagainsttheattributesand assignedadis-

cretescoreof0,I,3,or9,with a higherscoreindicating

goodness.The desiredsystemattributeswere thenrated

againsteachothertodeterminetheirrelativeimportance,

asinthepreviousexample. A weightingfactorwas deter-

mined on thebasisoftheattributeranking.The weighting

factorwas multipliedby theattributescoreforeach

option,and thesum oftheweightedrankingswas used to

determinea totalscoreforeach option.The resultsofthis

analysisareshown inTable 6.

Inthecurrentstudythisprocedurewas repeated

by usingthetopnineattributes,ratedby the weighting

factor,inordertoproducea manageable number of

attributescores.The resultsofthisanalysisareshown in

Table 7.As seeninthetable,therewas no differencein

theorderofselectionwhen thetop nineattributeswere

usedinsteadoftwenty-three.Following thiscalculation

theoptimum propulsionsystem was determinedby using

fuzzy logicmethods.For thefuzzylogicstudytheSyn-

ergy Group ratings,which were on a scaleof0 to9,were

used and dividedby I0 toallowthem tofallintherange

requiredby fuzzysettheory.Then, amatrixwas prepared

to rate the attributes against each other. This matrix was

developed from the Synergy Group weighting factors.

The fuzzy logic weighting factors were then calculated as

described in the previous example. The final weighted

results were obtained by raising the raw scores to the

power of the fuzzy logic weighting factor.

Table 8 shows the results from the fuzzy logic

analysis based on the Space Propulsion Syncrgy Group

results. From the analysis the top two options remain the

same as those found in previous analyses: the SSTO 02/

H2 (Single-Stage-To-Orbit, Oxygen/Hydrogen) Rocket
and the SSTO RBCC (Rocket-Based Combined Cycle)

options had the highest scores. However, the order of the

other options showed some significant differences. The

Conventional Expendable system moved from being the

sixth-best option to third-best, tied with the TSTO A/R

Fully Reusable (Two-Stage-To-Orbit, Air/Rocket) option.

4



The SSTO Dual Fuel option fell from fourth to fifth

place, and the SSTO Slush H2 RBCC fell from fifth to
sixth, tied with Conventional Partially Reusable options.

The upgrades to the existing expendable and existing
reusable vehicles remained as the lowest rated options.

One reason for the change in the order of selec-

tion is related to the significance of the "Easily Support-

able" criterion. Because supportability was defined by the

Synergy Group as a critical element in the decision pro-

tess, the fuzzy logic results emphasized this criterion.
Therefore, the low scores for the TSTO and the SSTO

Slush H2 RBCC in this category led to reduced ranldngs
for these vehicles. In addition, the SSTO Dual Fuel con-

cept fell in rank due to a low rating in the "Capacity" cri-

terion. In the raw scoring this option received one high

score in the "Easy Vehicle Integration" attribute. This one

high score played a key role in the higher score for this
vehicle in comparison to the Conventional Expendable

option in the original study. However, the fuzzy logic
results were based on the attributes for which the SSTO

Dual Fuel concept was not well-suited, such as the capac-

ity. Therefore, the fuzzy logic result was not influenced

by the high score for the vehicle integration attribute.

Although the fuzzy logic results did not show
differences in the best-scoring options, the method war-

rants consideration for future decision-making processes.

By using the minimum value of the weighted scores, the

fuzzy logic method focuses on the degree to which each

objective is met by the alternatives. The goal of the pro-

cess is to find the best option assuming all the options are

important. Therefore, by using the minimum value of the

weighted scores may allow for a different perspective on

the decision process. By doing an arithmetic weighting as

was done in the original Synergy Group study, the high
scores can dominate the results. While focusing on those

attributes that are good for each option is important, it is

equally important to evaluate which attribute may hinder

development at a later time. Therefore, it is suggested that

the future propulsion decision-making, including those

incorporating QFD approaches, take advantage of recent

work in fuzzy logic as a complement to arithmetic

weighting to assist in the selection process.

Space Propulsion Candidate Evaluation for Upper Stage
Aovlication

In the previous examples the assessments of

alternatives were performed on the basis of evaluation

input that was crisp (single values were used) but subjec-

tive. Often, however, trade-offs are required when the

evaluation criteria have a large degree of uncertainty. In

this case the criteria may be presented as a range of possi-

ble values instead of crisp values. For instance, in pur-

chasing an automobile the buyer may not know the exact

price of the vehicle, but may know what the price range
will be. Under these conditions the selection process may

become difficult as the ranges between automobile

options may overlap. Recently, fuzzy logic has been used
to make decisions where the input is uncertain. 1°'17 The

following example, which uses methods from references

10 and 16, illustrates this use of fuzzy logic.

The propulsion system used for orbit transfer in

space is often referred to as the upper stage, and typically

has a thrust level of 10,000 to 50,000 lbf. A propulsion

system of this size also would have application for inter-

planetary flight, or for transfer to and from the lunar sur-
face. TMIn considering future propulsion systems, the

options are usually distinguished by the propellants used.

Each propulsion system must be evaluated on the basis of
a number of factors, such as cost, reliability, and perfor-

mance. Assume that three options are being considered

for a future upper stage system: a liquid oxygen/liquid

hydrogen system CLOX/LH2), a nitrogen tetroxide/

monomethyl hydrazine system (NTO/MMH), and a liquid

oxygen/methane system (LOX/CH4). These systems are

to be compared on the basis of cost and three technical

criteria: specific impulse (Isp), weight, and reliability. The
evaluation is to be conducted assuming that the reliability

is twice as important to the evaluators as the specific

impulse, and four times as important as the weight. The

cost is 1.5 times as important as the technical criteria in
this evaluation. In addition, the evaluation criteria are

only known approximately because the propulsion sys-

tems have not yet been built. However, ranges of these

parameters are known in terms of most likely values and

largest likely values on the basis of past experience and

expert opinion. These values are given in Table 9.

Methods for solving evaluations such as these

are provided in references 10 and 17. The first step in the

evaluation is to group the criteria such that they reduce to

a single criterion. This grouping is shown in Fig. 2. The
set of basic criteria are known as the first-level criteria,

and include Isp,Weight, reliability, and cost. The second-
level criteria are technical and cost criteria, and the final

composite criterion is the system.

The next step in the process is the construction

of trapezoidal fuzzy sets to represent the uncertainty in

the basic criteria. Figure 3 shows an example of such a

fuzzy set. In the figure the most likely values for a particu-
lar criteria are assigned a value of 1 for the membership

function, which is a measure of the degree of member-

ship. The largest likely values are assigned a value of 0
for the membership function. The membership function is

assumed to be linear for values between the most likely

and largest likely values, thus providing the trapezoidal

shape. The third step in determining the optimum alterna-
tive is to transform the fuzzy sets for each first-level crite-



rioninto an index value. This f'wst-level index value

normalizes the fuzzy sets in relation to the best and worst

values for a particular criterion. As shown in reference
10, the index value, S, can be calculated for each crite-

rion, Z, as follows:

If Best Value (BV) > Worst Value (WV):

S=I

S = (Z -WV)/(BV -WV)

S=0

(Z > BV)

(WV < Z < BV)

(z<wv)

If Best Value (BV) < Worst Value (WV):

S = I (Z< BV)

S = (z-WV)/(BV -WV) (BY < Z < WV)

S=0 (Z>WV)

For example, if the criterion is cost or weight, then lower
values are better, and the best value is less than the worst

value. If the criterion is specific impulse or reliability,

then higher values are better, and the best value is greater
than the worst value. Because there are four values

assigned to the fuzzy set, corresponding to the most likely

and largest likely values, there will be four values of the
index value. The best and worst values used in this exam-

ple are provided in Table 10. Figure 4 illustrates the f'ast-

level index values for the NTO/MMH system cost as an

example. In this case the ftrst-level index values are 0.7,

0.6, 0.4, and 0.3 corresponding to the raw values 1.5, 2.0,

3.0, and 3.5 million dollars, respectively.

Next, the second-level index values, L, are cal-

culated by using weighting factors, w, and balancing fac-

tors, p, as follows:

1

IxL = wiS i

The weighting factors, which are used to indicate the rela-

tive importance of each criterion, are determined in a

method similar to that discussed in previous examples. A

paired attribute matrix is prepared by using the relative
importance of each criterion. In this case two matrices

will be developed: one for the technical criteria of spe-

cific impulse, weight and reliability to obtain the techni-

cal index, and another for the comparison between
technical and cost to obtain the final composite index.

The eigenvectors of the maximum eigenvalues are then

calculated as before. The weighting factors are obtained

by normalizing the eigenveetors such that all the weight-

ing factors for each comparison sum to a value of 1. The

weighting factors are provided in Table 11. The balancing

factors are used to reflect the maximum deviation or dif-
ference between a criterion value and the best value for

that criterion. The larger the value of the balancing factor,

the greater the concern with respect to that eriterion's
deviation. As described in reference 16, a value of 1 or 2

appears to be a good choice forp. In this example the bal-
ancing factor was assumed to be 1 in all eases. As in the

case of the fast-level index, four values of the second-

level index will result for the cost and for the technical

criteria.

As an illustrative example of the second-level
index value, consider the technical criteria for the LOX/

LH2 system. Values of 0.86, 0.30, and 0.96 were obtained

for one of the first-level index values for Isp, weight, and
reliability, respectively. By using the weighting factors
from table XI this second-level index value as:

L = ((0.354)(0.86) + (0.177)(0.30) + (0.467)(0.96)) 1

L = 0.806

The final composite index values,/__, can be
obtained as follows:

1

L h = { WtechnicalLtechnical+ WcostLcost}

The four composite index values for each alternative cor-

respond to a fuzzy set. The resulting fuzzy sets for the

alternatives in this example are provided in Fig. 5. As

seen by the figure, the fuzzy sets show significant over-

lap; therefore, a method is required to rank the alterna-
tives.

To rank the options, the maximizing and mini-
mizing set concepts of fuzzy logic are used. This ranking

method is illustrated in Fig. 6. The maximizing set, !1M, is
defined as:

I.tM = (L h - Lmin)/(Lmax - Lmin) Lmin < Lh < Lmax

laM = 0 otherwise

As depicted in Fig. 6, the maximizing set intersects each

trapezoidal fuzzy set in two places. A right utility value,

U R, can be determined on the basis of these intersection

points; the value for U R for each fuzzy set is the largest of

these two intersection values. Similarly, a minimizing set,

laG , is defined as:

= _ - Lmax)/(Lrain - Lmax) Lmin < Lh < Lmax

laG = 0 otherwise

The value for the left utility value, U L, is the maximum of
the two intersection values of the minimizing set and the



fuzzy set. The total utility or ordering value, U, for each

alternative is found by the following equation:

U R+ I- UL
U=

2

For the example provided here the final order of
alternatives was as follows:

1. NTO/MMH U = 0.681

2. LOX/CH4 U = 0.522

3. LOX/LH2 U = 0.324

In this example the order of selection was not
clear from the original range of data. This is often the

case when decisions are made on the development of new

systems. However, the fuzzy logic methods provide a sys-

tematic approach to making a selection when the criteria

are vague and of varying importance. In this case the

NTO/MMH system had lower performance than the other

options, but the combination of lower weight and lower

cost led to its high ranking. Note that the results were

highly sensitive to the importance factors assumed. If all

the criteria were assumed to be of equal importance then
the order of selection was LOX/CH4, then NTO/MMH,

followed by LOXILH2. The balancing factor, p, did not

significantly impact the results, however. In this example

only four criteria were used to compare three alternatives;

this process can easily be extended to many more criteria

and alternatives. This example shows the utility of fuzzy

logic techniques in providing a method for decision-mak-

ing when the basic evaluating criteria are uncertain.

Concluding Remarks

A study was performed to demonstrate the use of

fuzzy logic approaches to assist in decision-making under
conditions of vague or qualitative criteria. Such situations

arise when the evaluation criteria for the best option

among alternatives are of unequal importance. One

approach used is based on the concept of applying a sub-

jective value to each alternative according to each of the
evaluation criteria. Weighting factors can then be applied

to the raw scores to provide a final ranking for each

option on the basis of the relative importance of each cri-
teria. Two examples were provided to illustrate the fuzzy

logic decision-making procedure by using this approach.
Another method used criteria that were objective but

uncertain. In this case ranges of values were used for fac-

tors such as cost, performance, and reliability. A final

ranking of the alternatives was obtained by using weight-

ing factors and fuzzy set theory. One example was pro-
vided to illustrate this method.

The fuzzy logic methods shown here provide

powerful tools for comparing alternatives under subjec-
tive and uncertain evaluation procedures. Fuzzy logic

allows for quantifying vague or qualitative ideas, which
are common in multi-objective problems. Also, as in

other decision-making processes presented here, the eval-

uating criteria or objectives are rated against each other

during the process, forcing the decision maker to decide

what is most important to the final result. Most impor-

tantly, the process provides a result based on the degree to
which each alternative meets each objective, thereby

allowing for a decision based on factors that may have
been overlooked in conventional procedures. On the basis

of the results in this study fuzzy logic provides an excel-

lent framework for assisting in often-difficult process of

selecting the best option among many alternatives.
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TABLE 1.-RAW SCORES FOR VENDOR PROPOSAL EXAMPLE.

Evaluation criteria

Technical Item 1

Technical Item 2

Technical Item 3

TechnicalItem4

TechnicalItem 5

Cost

Vendor

A B C D

.1 .9 .5 .5

.5 .9 .5 .5

.7 .7 .5 .3

.9 .9 .3 .7

.9 .7 .7 .5

.3 .5 .7 .5

TABLE 2.-WEIGHTED SCORES FOR VENDOR PROPOSAL EXAMPLE: CONVENTIONAL METHOD.

Evaluation criteria Weight

Technical item I .15

Technical item 2 .15

Technical item 3 .10

Technicalitem4 .05

Technical item 5 .05

Cost .50

Total score

Vendor

A B C D

.015 .135 .075 .075

.075 .135 .075 .075

.070 .070 .050 .030

.045 .045 .015 .035

.045 .035 .035 .025

.150 .250 .350 .250

.400 .670 .600 .490

Order of selection: B, C, D, A



TABLE 3.- PAIRED ATYRIBUTE MATRIX FOR VENDOR PROPOSAL EXAMPLE.

Attribute

(weight)

where:

Attribute

1 2 3 4 5 6

(.15) (.15) (.10) (.05) (.05) (.50)

1 1 .o0 1.00 1.50 3.00 3.00 .30

(.15)

2 1.00 1.00 1.50 3.00 3.00 .30

(.15)

3 .67 .67 1.00 2.00 2.00 0.20

(.10)

4 .33 .33 .50 1.00 1.00 .10

(.05)

5 .33 .33 .50 1.00 1.00 .10

(.05)

6 3.33 3.33 5.00 10.00 10.00 1.00

(.50)

Attribute 1

Attribute 2

Attribute 3

Attribute 4

Attribute 5

Attribute 6

= Technical item 1 (weight = 0.15)

= Technical item 2 (weight = 0.15)

= Technical item 3 (weight = 0.10)

= Technical item 4 (weight = 0.05)

= Technical item 5 (weight = 0.05)

= Cost (weight = 0.50)

Resulting eigenvector: (0.269, 0.269, 0.180, 0.090, 0.090, 0.898)

TABLE 4.-WEIGHTED SCORES FOR VENDOR PROPOSAL EXAMPLE: FUZZY LOGIC ME'I_OD.

Vendor

Evaluation criteria Weight

Technical item 1 .269

Technical item 2

Technical item 3

Technical item 4

Technical item 5

.269

.180

.090

.090

Cost .898

Minimum score

Order of selection: C, B/D, A

A B C D

.538 .972 .830 .830

.830 .972 .830 .830

.938 .938 .883 .805

.991 .991 .897 .968

.991 .968 .968 .940

.339 .537 .726 .537

.339 .537 .726 .537



TABLE5.-SPACEPROPULSION SYNERGY GROUP PROPULSION OPTIONS.

Option Designation Vehicle Candidate Access to Space Option No.

A Existing Expendables (Upgrade)

B Existing Reusable (STS, Upgrade) 1

C Conventional Expendable 2

D Conventional Partially Reusable 2

E SSTO O2/H2 Rocket 3

F SSTO RBCC 3

G TSTO A/R Fully Reusable 3

H SSTO Dual Fuel 3

I SSTO Slush H2 RBCC 3

TABLE 6.- SPACE PROPULSION SYNERGY GROUP RESULTS: ALL ATIRIBUTES.

Attribute Weight

1. Low recurring cost 11.13

2. Low non-recurring cost 1.48

3. Min. effect on atmosphere 1.11

4. Min. envir, impact at all sites 1.11

5. Vehicle safety 2.32

6. Personnel safety 1.48

7. Equipment/vehicle safety 1.48

8. Intact vehicle recovery 3.09

9. Mission success 2.78

10. Launch on time 6.95

11. Flexible 3.34

12. Capacity 7.42

13. Vehicle health management 4A5

14. Easy vehicle integration

15. Maintainable

8.90

8.90

16. Simple 5.34

17. Launch on demand 5.34

18. Easily supportable 11.13

19. Technology options 1.67

20. Technology readiness 3.34

21. Technology margin 1.48

22. Benefit GNP 2.97

23. Social perception 2.78

Weighted Scores

Vehicle Candidates

A B C D E F G H I

1 1 3 3 9 9 9 3 3

9 9 3 3 3 1 1 1 1

1 1 3 3 3 3 3 1 3

1 1 3 3 3 3 3 1 3

1 1 3 3 9 9 9 3 3

3 3 9 9 9 9 9 9 3

3 3 9 9 9 9 9 3 3

0 1 0 1 3 9 9 3 3

1 1 3 3 9 9 3 3 3

1 1 3 3 9 9 3 1 1

1 1 3 3 9 9 3 1 1

1 1 3 3 9 9 9 1 1

1 3 3 3 9 9 9 1 3

0 1 3 3 9 9 3 9 9

0 1 3 3 9 9 3 3 3

0 0 3 3 3 3 3 3 3

0 0 1 1 3 3 1 3 3

0 0 3 1 9 9 3 3 1

3 3 9 9 3 1 3 1 1

3 3 3 3 1 1 1 1 1

9 9 9 9 3 1 3 3 1

1 1 3 3 9 9 9 3 3

1 1 3 3 9 9 9 9 9

97 127 317 298 729 739 502 324 303
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TABLE7.-SPACEPROPULSIONSYNERGYGROUPRESULTS:TOPNINEATIRIBUTES,CONVEN-
TIONALANALYSIS.

a) Raw values

Options

Attribute A B C D E F G H I

1. Low recurring cost 1 1 3 3 9 9 9 3 3

10. Launch on time 1 1 3 3 9 9 3 1 1

12. Capacity 1 1 3 3 9 9 9 1 1

13. Vehicle health management 1 3 3 3 9 9 9 1 3

14. Easy vehicle integration 0 1 3 3 9 9 3 9 9

15. Maintainable 0 1 3 3 9 9 3 3 3

16. Simple 0 0 3 3 3 3 3 3 3

17. Launch on demand 0 0 1 1 3 3 1 3 3

18. Easily supportable 0 0 3 1 9 9 3 3 1

b) Weighted values

Attribute Weight

1. Low recurring cost 11.13

10. Launch on time 6.95

12. Capacity 7.42

13. Vehicle health management 4.45

14. Easy vehicle integration 8.90

15. Maintainable 8.90

16. Simple 5.34

17. Launch on demand

18. Easily supportable

5.34

11.13

Total

Options

A B C D E F G H

11.1 11.1 33.4 33.4 100. 100. 100. 33.4

7.0 7.0 20.9 20.9 62.6 62.6 20.9 7.0

7.4 7.4 22.3 22.3 66.8 66.8 66.8 7.4

4.5 13.4 13.4 13.4 40.1 40.1 40.1 4.5

0.0 8.9 26.7 26.7 80.1 80.1 26.7 80.1

0.0 8.9 26.7 26.7 80.1 80.1 26.7 26.7

0.0 0.0 16.0 16.0 16.0 16.0 16.0 16.0

0.0 0.0 5.3 5.3 16.0 16.0 5.3 16.0

0.0 0.0 33.4 11.1 100. 100. 33.4 33.4

30. 57. 198. 176. 562. 562. 336. 224.

I

33.4

7.0

7.4

13.4

80.1

26.7

16.0

16.0

11.1

211.

Order of Selection: E/F, G, H, I, C, D, B, A
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TABLE8.-SPACE PROPULSION SYNERGY GROUP RESULTS USING FUZZY LOGIC.

a) Raw values

Options

Attribute A B C D E F G H I

1. Low recurring cost .1 .1 .3 .3 .9 .9 .9 .3 .3

10. Launch on time .1 .1 .3 .3 .9 .9 .3 .1 .1

12. Capacity .1 .1 .3 .3 .9 .9 .9 .1 .1

13. Vehicle health management .1 .3 .3 .3 .9 .9 .9 .1 .3

14. Easy vehicle integration 0 .1 .3 .3 .9 .9 .3 .9 .9

15. Maintainable 0 .1 .3 .3 .9 .9 .3 .3 .3

16. Simple 0 0 .3 .3 .3 .3 .3 .3 .3

17. Launch on demand 0 0 .1 .1 .3 .3 .1 .3 .3

18. Easily supportable 0 0 .3 .1 .9 .9 .3 .3 .1

b) Weighted values

Attribute Weight

1. Low recurring cost .46

10. Launch on time .29

12. Capacity .31

13. Vehicle health management .18

14. Easy vehicle integration .37

15. Maintainable .37

16. Simple .22

17. Launch on demand .22

18. Easily supportable .46

Minimum

Options

A B C D E F G H I

.35 .35 .57 .57 .95 .95 .95 .57 .57

.51 .51 .71 .71 .97 .97 .71 .51 .51

.49 49 .69 .69 .97 .97 .97 49 .49

.66 .81 .81 .81 .98 .98 .98 .66 .81

0 43 .64 .64 .96 .96 .64 .96 .96

0 .43 .64 .64 .96 .96 .64 .64 .64

0 0 .77 .77 .77 .77 .77 .77 .77

0 0 .60 .60 .77 .77 .60 .77 .77

0 0 .57 .35 .95 .95 .57 .57 .35

0 0 .57 .35 .77 .77 .57 49 .35

Order of selection: E/F, C/G, H, D/I, AJB
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TABLE 9.- BASIC CRITERION VALUES FOR UPPER STAGE ALTERNATIVES.

Basic criteria

Cost ($M)

Specific impulse (sex:)

Weight (kg)

Reliability

LOX/LH2

Largest Most

likely likely
interval interval

3-5 3.5-4.5

430-450 435-445

210-290 230-270

.96-.995 .98-.99

NIO/MMH

Largest Most
likely likely

interval interval

1.5-3.5 2-3

310-330 315-325

120-190 135-165

.96-.995 .98-.99

LOX/CH4

Largest Most

likely likely
interval interval

2-4 2.5-3.5

340-360 345-355

200-280 220-260

.94-.99 .96-.97

TABLE 10.- BEST AND WORST VALUES FOR EACH BASIC CRITERION.

Basic criterion Best value Worst value

Cost ($M) 0 5

Specific impulse (sec) 500 0

Weight (kg) 0 300

Reliability 1 0

TABLE 11.- WEIGHTING FACTORS FOR EACH BASIC CRITERION.

Criterion

Specific impulse

Weight

Weight

.354

.177

Reliability .467

Technical .400

Cost .600

13
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Figure 1.- Comparison of classical set with fuzzy set for the set "old".
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